

SimulRPi’s documentation

 README

README

 Example: How to use SimulRPi

Example: How to use SimulRPi

We will show a code example that makes use of both SimulRPi.GPIO and
RPi.GPIO [https://pypi.org/project/RPi.GPIO/] so you can run the script on a Raspberry Pi (RPi) or computer.

	Code example

	Code explanation

Code example

The following code blinks a LED for 3 seconds after a user presses a push
button. The code can be run on an RPi or computer. In the latter case, the
simulation package SimulRPi is used for displaying a LED in the terminal
and monitoring the keyboard.

Script that blinks a LED for 3 seconds when a button (or the key
cmd_r) is pressed

 import sys
 import time

 if len(sys.argv) > 1 and sys.argv[1] == '-s':
 import SimulRPi.GPIO as GPIO
 msg1 = "\nPress key 'cmd_r' to blink a LED"
 msg2 = "Key 'cmd_r' pressed!"
 else:
 import RPi.GPIO as GPIO
 msg1 = "\nPress button to blink a LED"
 msg2 = "Button pressed!"

 led_channel = 10
 button_channel = 17
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(led_channel, GPIO.OUT)
 GPIO.setup(button_channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)
 print(msg1)
 while True:
 try:
 if not GPIO.input(button_channel):
 print(msg2)
 start = time.time()
 while (time.time() - start) < 3:
 GPIO.output(led_channel, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(led_channel, GPIO.LOW)
 time.sleep(0.5)
 break
 except KeyboardInterrupt:
 break
 GPIO.cleanup()

Add the previous code in a script named for example script.py. To run it on
your computer, use the -s option like this:

$ python script.py -s

If you run it on your RPi, connect a LED to the GPIO channel 10 and a push
button to the GPIO channel 17. You don’t have to add the -s option when
running the script on the RPi:

$ python script.py

On your computer, you get the following:

Output for the script when it is run on a computer (blinking
of the LED not shown)

$ python script.py -s

Press key 'cmd_r' to blink a LED
Key 'cmd_r' pressed!

 🛑 [10]

On your RPi, you get almost the same result without the LED shown in the
terminal:

Output for the script when it is run on an RPi (the LED will
blink for 3 seconds)

$ python script.py

Press button to blink a LED
Button pressed!

Note

The script can be stopped at any moment if the keys ctrl + c are
pressed.

Code explanation

At the beginning of the script, we check if the -s flag was used. If it
is the case, then the simulation module SimulRPi.GPIO is imported.
Otherwise, the module RPi.GPIO is used:

if len(sys.argv) > 1 and sys.argv[1] == '-s':
 import SimulRPi.GPIO as GPIO
 msg1 = "\nPress key 'cmd_r' to blink a LED"
 msg2 = "Key 'cmd_r' pressed!"
else:
 import RPi.GPIO as GPIO
 msg1 = "\nPress button to blink a LED"
 msg2 = "Button pressed!"

Then, we setup the LED and button channels using the BCM mode:

led_channel = 10
button_channel = 17
GPIO.setmode(GPIO.BCM)
GPIO.setup(led_channel, GPIO.OUT)
GPIO.setup(button_channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Finally, we enter the infinite loop where we wait for the push button (or the
key cmd_r) to be pressed or ctrl + c which terminates the script
immediately. If the push button (or the key cmd_r) is pressed, we blink a
LED for 3 seconds, then do a cleanup of GPIO channels (very important), and
terminate the script:

while True:
 try:
 if not GPIO.input(button_channel):
 print(msg2)
 start = time.time()
 while (time.time() - start) < 3:
 GPIO.output(led_channel, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(led_channel, GPIO.LOW)
 time.sleep(0.5)
 break
 except KeyboardInterrupt:
 break
 GPIO.cleanup()

 Useful functions from the API

Useful functions from the API

We present some useful functions from the SimulRPi API along with code
examples.

Important

These are functions that are available when working with the simulation
module SimulRPi.GPIO. Thus, you will always see the following import at
the beginning of each code example presented:

import SimulRPi.GPIO as GPIO

The code examples are to be executed on your computer, not on an RPi since
the main reason for these examples is to show how to use the
SimulRPi API.

See also

Example: How to use SimulRPi: It shows you how to integrate the
simulation module SimulRPi.GPIO with RPi.GPIO

Contents

	GPIO.cleanup

	GPIO.setchannelnames

	GPIO.setchannels

	GPIO.setdefaultsymbols

	GPIO.setkeymap

	GPIO.setprinting

	GPIO.setsymbols

	GPIO.wait

GPIO.cleanup

cleanup() cleans up any resources at the end of your
program. Very importantly, when running in simulation, the threads responsible
for displaying “LEDs” in the terminal and listening to the keyboard are
stopped. Hence, we avoid the program hanging at the end of its execution.

Here is a simple example on how to use cleanup() which
should be called at the end of your program:

import SimulRPi.GPIO as GPIO

led_channel = 11
GPIO.setmode(GPIO.BCM)
GPIO.setup(led_channel, GPIO.OUT)
GPIO.output(led_channel, GPIO.HIGH)
GPIO.cleanup()

Output:

🛑 [11]

GPIO.setchannelnames

setchannelnames() sets the channel names for multiple GPIO
channels. The channel name will be shown in the terminal along with the LED
symbol for each output channel:

🛑 [LED 1] 🛑 [LED 2] 🛑 [LED 3] ⬤ [lightsaber]

If no channel name is provided for a GPIO channel, its channel number will be
shown instead in the terminal.

setchannelnames() takes as argument a dictionary that maps
channel numbers (int [https://docs.python.org/3/library/functions.html#int]) to channel names (str [https://docs.python.org/3/library/stdtypes.html#str]):

channel_names = {
 1: "The Channel 1",
 2: "The Channel 2"
}

Example: updating channel names for two output channels

import SimulRPi.GPIO as GPIO

GPIO.setchannelnames({
 10: "led 10",
 11: "led 11"
})
GPIO.setmode(GPIO.BCM)
for ch in [10, 11]:
 GPIO.setup(ch, GPIO.OUT)
 GPIO.output(ch, GPIO.HIGH)
GPIO.cleanup()

Output:

🛑 [led 10] 🛑 [led 11]

GPIO.setchannels

setchannels() sets the attributes for multiple GPIO
channels. These attributes are:

	channel_id: unique identifier

	channel_name: will be shown along the LED symbol in the terminal

	channel_number: GPIO channel number based on the numbering system
you have specified (BOARD or BCM).

	led_symbols: should only be defined for output channels. It is a
dictionary defining the symbols to be used when the LED is turned ON
and turned OFF.

	key: should only be defined for input channels. The names of keyboard
keys that you can use are those specified in the
SimulRPi’s API documentation, e.g. media_play_pause, shift, and
shift_r.

setchannels() accepts as argument a list where each item
is a dictionary defining the attributes for a given GPIO channel.

Example: updating attributes for an input and output channels. Then
when the user presses cmd_r, we blink a LED for 3 seconds

 import time
 import SimulRPi.GPIO as GPIO

 key_channel = 23
 led_channel = 10
 gpio_channels = [
 {
 "channel_id": "button",
 "channel_name": "The button",
 "channel_number": key_channel,
 "key": "cmd_r"
 },
 {
 "channel_id": "led",
 "channel_name": "The LED",
 "channel_number": led_channel,
 "led_symbols": {
 "ON": "🔵",
 "OFF": "⚪ "
 }
 }
]
 GPIO.setchannels(gpio_channels)
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(key_channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)
 GPIO.setup(led_channel, GPIO.OUT)
 print("Press key 'cmd_r' to blink a LED")
 while True:
 try:
 if not GPIO.input(key_channel):
 print("Key 'cmd_r' pressed")
 start = time.time()
 while (time.time() - start) < 3:
 GPIO.output(led_channel, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(led_channel, GPIO.LOW)
 time.sleep(0.5)
 break
 except KeyboardInterrupt:
 break
 GPIO.cleanup()

Output: blinking not shown

Press key 'cmd_r' to blink a LED
Key 'cmd_r' pressed

 🔵 [The LED]

Note

In the previous example, we changed the default keyboard key associated with
the GPIO channel 23 [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_keymap.py#L25] from media_volume_mute to cmd_r.

 key_channel = 23
 led_channel = 10
 gpio_channels = [
 {
 "channel_id": "button",
 "channel_name": "The button",
 "channel_number": key_channel,
 "key": "cmd_r"
 },
 ...

GPIO.setdefaultsymbols

setdefaultsymbols() sets the default LED symbols used by
all output channels. It accepts as argument a dictionary that maps an
output state (‘ON’, ‘OFF’) to a LED symbol (str [https://docs.python.org/3/library/stdtypes.html#str]).

By default, these are the LED symbols used by all output channels:

default_led_symbols = {
 'ON': '🛑',
 'OFF': '⚪'
}

The next example shows you how to change these default LED symbols with the
function setdefaultsymbols()

Example: updating the default LED symbols and toggling a LED

 import time
 import SimulRPi.GPIO as GPIO

 GPIO.setdefaultsymbols(
 {
 'ON': '🔵',
 'OFF': '⚪ '
 }
)
 led_channel = 11
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(led_channel, GPIO.OUT)
 GPIO.output(led_channel, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(led_channel, GPIO.LOW)
 time.sleep(0.5)
 GPIO.cleanup()

Output: blinking not shown

🔵 [11]

GPIO.setkeymap

setkeymap() sets the default keymap dictionary with a
new mapping between keyboard keys and channel numbers.

It takes as argument a dictionary mapping keyboard keys (str [https://docs.python.org/3/library/stdtypes.html#str]) to GPIO
channel numbers (int [https://docs.python.org/3/library/functions.html#int]):

key_to_channel_map = {
 "cmd": 23,
 "alt_r": 24,
 "ctrl_r": 25
}

Example: by default [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_keymap.py#L19], cmd_r is mapped to channel 17.
We change this mapping by associating ctrl r to channel 17.

import SimulRPi.GPIO as GPIO

channel = 17
GPIO.setkeymap({
 'ctrl_r': channel
})
GPIO.setmode(GPIO.BCM)
GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)
print("Press key 'ctrl_r' to exit")
while True:
 if not GPIO.input(channel):
 print("Key 'ctrl_r' pressed!")
 break
GPIO.cleanup()

Output:

Press key 'ctrl_r' to exit
Key 'ctrl_r' pressed!

GPIO.setprinting

setprinting() enables or disables printing the LED symbols
and channel names/numbers to the terminal.

Example: disable printing to the terminal

import SimulRPi.GPIO as GPIO

GPIO.setprinting(False)
led_channel = 11
GPIO.setmode(GPIO.BCM)
GPIO.setup(led_channel, GPIO.OUT)
GPIO.output(led_channel, GPIO.HIGH)
GPIO.cleanup()

GPIO.setsymbols

setsymbols() sets the LED symbols for multiple output
channels. It takes as argument a dictionary mapping channel numbers
(int [https://docs.python.org/3/library/functions.html#int]) to LED symbols (dict [https://docs.python.org/3/library/stdtypes.html#dict]):

led_symbols = {
 1: {
 'ON': '🔵',
 'OFF': '⚪ '
 },
 2: {
 'ON': '🔵',
 'OFF': '⚪ '
 }
}

There is a LED symbol for each output state (ON and OFF) for a given output
channel.

Example: set the LED symbols for a GPIO channel

 import time
 import SimulRPi.GPIO as GPIO

 GPIO.setsymbols({
 11: {
 'ON': '🔵',
 'OFF': '⚪ '
 }
 })
 led_channel = 11
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(led_channel, GPIO.OUT)
 GPIO.output(led_channel, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(led_channel, GPIO.LOW)
 time.sleep(0.5)
 GPIO.cleanup()

Output: blinking not shown

🔵 [11]

GPIO.wait

wait() waits for the threads to do their tasks. If there
was an exception caught by one of the threads, then it is raised by
wait().

Thus it is ideal for wait() to be called within a try
block after you are done with the SimulRPi.GPIO API:

try:
 do_something_with_gpio_api()
 GPIO.wait()
except Exception as e:
 # Do something with error
finally:
 GPIO.cleanup()

wait() takes as argument the number of seconds you want to
wait at most for the threads to accomplish their tasks.

Example: wait for the threads to do their jobs and if there is an exception
in one of the threads’ target function or callback, it will be caught in our
except block.

import time
import SimulRPi.GPIO as GPIO

try:
 led_channel = 11
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(led_channel, GPIO.OUT)
 GPIO.output(led_channel, GPIO.HIGH)
 GPIO.wait(1)
except Exception as e:
 # Could be an exception raised in a thread's target function or callback
 # from SimulRPi library
 print(e)
finally:
 GPIO.cleanup()

Important

If we don’t use wait() in the previous example, we
won’t be able to catch any exception occurring in a thread’s target function
or callback since the threads simply catch and save the exceptions but
don’t raise them. wait() takes care of raising an
exception if it was already caught and saved by a thread.

Also, the reason for not raising the exception within a thread’s run
method or its callback is because the main program will not be able to
catch it. The thread’s exception needs to be raised outside of the thread’s
run method or callback so the main program can further catch it. And
this is what input(), output(),
and wait() do: they raise the thread’s exception so the
main program can catch it and process it down the line.

See Test threads raising exceptions [https://github.com/raul23/SimulRPi/blob/master/docs/test_threads_exception.rst] about some tests done to check what
happens when a thread raises an exception within its run method or
callback (spoiler: not good!).

 Display problems

Display problems

	Non-ASCII characters can’t be displayed

	Solution #1: change your locale settings (best solution)

	Solution #2: export PYTHONIOENCODING=utf8 (temporary solution)

	Use ASCII-based LED symbols

	Multiple lines of LED symbols

	Solution: enlarge the window

Non-ASCII characters can’t be displayed

When running the SimulRPi.run_examples script or using the
SimulRPi.GPIO module in your own code, your terminal might have
difficulties printing the default LED symbols based on special characters:

UnicodeEncodeError: 'ascii' codec can't encode character '\U0001f6d1' in position 2: ordinal not in range(128)

This is mainly a problem with your locale settings used by your terminal.

Solution #1: change your locale settings (best solution)

The best solution consists in fixing your locale settings since it is
permanent and you don’t have to change any Python code.

	Append ~/.bashrc or ~/.bash_profile with:

export LANG="en_US.UTF-8"
export LANGUAGE="en_US:en"

You should provide your own UTF-8 based locale settings. The example
uses the English (US) locale with the encoding UTF-8. The locale -a
command gives you all the available locales on your Linux or Unix-like
system.

	Reload the .bashrc:

$ source .bashrc

3. Run the locale command to make sure that your locale settings were set
correctly:

$ locale

LANG="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_CTYPE="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_ALL=

	Run the SimulRPi.run_examples script to test if you can display the
LED symbols fine using the correct encoding UTF-8:

$ run_examples -s -e 1

Output:

[image: Terminal output: set locale settings correctly]
 [https://raw.githubusercontent.com/raul23/images/master/SimulRPi/v0.1.0a0/solution_with_locale_change.png]

See also

	How to Set Locales (i18n) On a Linux or Unix [https://www.cyberciti.biz/faq/how-to-set-locales-i18n-on-a-linux-unix/]: detailed article

	How can I change the locale? [https://raspberrypi.stackexchange.com/a/19866]: from raspberrypi.stackexchange.com,
provides answers to set the locale user and system-wide

Solution #2: export PYTHONIOENCODING=utf8 (temporary solution)

Before running the SimulRPi.run_examples script, export the
environment variable PYTHONIOENCODING with the correct encoding:

$ export PYTHONIOENCODING=utf8
$ run_examples -s -e 1

Output:

[image: Terminal output: export PYTHONIOENCODING=utf8]
 [https://raw.githubusercontent.com/raul23/images/master/SimulRPi/v0.1.0a0/solution_with_locale_change.png]

However, this is not a permanent solution because if you use another
terminal, you will have to export PYTHONIOENCODING again before running
the script.

Use ASCII-based LED symbols

If you tried the previous two solutions, and you still can’t display the
LED symbols that use special characters (UTF-8 encoding), you can instead opt
for ASCII-based LED symbols.

Method #1: use the SimulRPi.GPIO API

If you are using the SimulRPi.GPIO module in your code, you can change
the default LED symbols used by all output channels with the function
setdefaultsymbols(). Hence, you can provide your own
ASCII-based LED symbols using ANSI codes to color them:

Example: updating the default LED symbols with ASCII
characters and ANSI codes

 import time
 import SimulRPi.GPIO as GPIO

 GPIO.setdefaultsymbols(
 {
 'ON': '\033[91m(0)\033[0m',
 'OFF': '(0)'
 }
)
 led_channel = 11
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(led_channel, GPIO.OUT)
 GPIO.output(led_channel, GPIO.HIGH)
 GPIO.cleanup()

Or you can provide the argument "default_ascii" to the function
setdefaultsymbols() which will provide default ASCII-based
LED symbols for you:

GPIO.setdefaultsymbols("default_ascii")

Output:

[image: Terminal output: ASCII characters used for LED symbols]
 [https://raw.githubusercontent.com/raul23/images/master/SimulRPi/v0.1.0a0/solution_with_ascii_characters.png]

Note

If working with the Darth-Vader-RPi [https://github.com/raul23/Darth-Vader-RPi] library, you can use ASCII LED
symbols when running the start_dv script by assigning the value
“default_ascii” to the default_led_symbols setting in the
main configuration file [https://github.com/raul23/archive/blob/master/SimulRPi/v0.1.0a0/default_main_cfg.json#L7]:

"default_led_symbols": "default_ascii",

See also

	Build your own Command Line with ANSI escape codes [https://www.lihaoyi.com/post/BuildyourownCommandLinewithANSIescapecodes.html] : more info about
using ANSI escape codes (e.g. color text, move the cursor up)

	How to print colored text in Python? [https://stackoverflow.com/questions/287871/how-to-print-colored-text-in-python] : from stackoverflow, lots of
Python examples using built-in modules or third-party libraries to color
text in the terminal.

Method #2: use the command-line option -a

When running the SimulRPi.run_examples script, you can use the
command-line option -a which will make use of ASCII-based LED symbols:

$ run_examples -s -e -1 -a

Output:

[image: Terminal output: ASCII characters used for LED symbols]
 [https://raw.githubusercontent.com/raul23/images/master/SimulRPi/v0.1.0a0/solution_with_ascii_characters_channel9.png]

Multiple lines of LED symbols

When running the SimulRPi.run_examples script, if you get the following:

[image: Bad display when running the script in a small terminal window]
 [https://raw.githubusercontent.com/raul23/images/master/SimulRPi/v0.1.0a0/small_window_multiple_lines_bad.png]It means that you are running the script within a too small terminal window,
less than the length of a displayed line.

Solution: enlarge the window

The solution is to simply enlarge your terminal window a little bit:

[image: Good display when running the script in a larger terminal window]
 [https://raw.githubusercontent.com/raul23/images/master/SimulRPi/v0.1.0a0/small_window_multiple_lines_good.png]Technical explanation: the script is supposed to display the LEDs turning
ON and OFF always on the same line. That is, when a line of LEDs is displayed,
the script goes to the beginning of the line to display the next state of LEDs
by printing over the previous LEDs.

However, when the window is too small, the first line of LEDs that gets printed
overflows on the second line since there is not enough space to print everything
on the first line. Then, the script won’t be able to overwrite the first line of
LEDs because it will be positioned on the second line instead. So you get this
display of multiple lines of LEDs.

 API Reference

API Reference

	SimulRPi.GPIO

	SimulRPi.manager

	SimulRPi.mapping

	SimulRPi.pinbdb

	SimulRPi.run_examples

	Usage

	SimulRPi.utils

SimulRPi.GPIO

Module that partly fakes RPi.GPIO [https://pypi.org/project/RPi.GPIO/] and simulates some I/O devices.

It simulates these I/O devices connected to a Raspberry Pi:

	push buttons by listening to pressed keyboard keys and

	LEDs by displaying red dots blinking in the terminal along with
their GPIO channel number.

When a LED is turned on, it is shown as a red dot in the terminal. The
pynput [https://pynput.readthedocs.io/en/latest/index.html] package is used to monitor the keyboard for any pressed key.

Example: terminal output

⬤ [9] ⬤ [10] 🔴 [11]

where each dot represents a LED and the number between brackets is the
associated GPIO channel number.

Important

This library is not a Raspberry Pi emulator nor a complete mock-up of
RPi.GPIO [https://pypi.org/project/RPi.GPIO/], only the most important functions that I needed for my
Darth-Vader-RPi project [https://github.com/raul23/Darth-Vader-RPi] were added.

If there is enough interest in this library, I will eventually mock more
functions from RPi.GPIO [https://pypi.org/project/RPi.GPIO/].

	
SimulRPi.GPIO.cleanup()

	Clean up any resources (e.g. GPIO channels).

At the end of any program, it is good practice to clean up any resources
you might have used. This is no different with RPi.GPIO [https://pypi.org/project/RPi.GPIO/]. By returning
all channels you have used back to inputs with no pull up/down, you can
avoid accidental damage to your RPi by shorting out the pins.
[Ref: RPi.GPIO wiki [https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/]]

Also, the two threads responsible for displaying LEDs in the terminal and
listening for pressed/released keys are stopped.

Note

On an RPi, cleanup() will:

	only clean up GPIO channels that your script has used

	also clear the pin numbering system in use (BOARD or BCM)

Ref.: RPi.GPIO wiki [https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/]

When using the SimulRPi package, cleanup() will:

	stop the displaying thread Manager.th_display_leds

	stop the listening thread Manager.th_listener

	show the cursor again which was hidden in
display_leds()

	reset the GPIO.manager’s attributes (an instance of
Manager)

	
SimulRPi.GPIO.input(channel)

	Read the value of a GPIO pin.

The listening thread is also started if possible.

	Parameters

	channel (int [https://docs.python.org/3/library/functions.html#int]) – Input channel number based on the numbering system you have specified
(BOARD or BCM).

	Returns

	state – If no Pin could be retrieved based on the
given channel number, then None [https://docs.python.org/3/library/constants.html#None] is returned. Otherwise, the
Pin’s state is returned: 1 (HIGH) or 0
(LOW).

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]

	Raises

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – If the listening thread caught an exception that occurred in
 on_press() or
 on_release(), the said exception will
 be raised here.

Note

The listening thread (for monitoring pressed keys) is started if there
is no exception caught by the thread and if it is not alive, i.e. it is
not already running.

Important

The reason for checking if there is no exception already caught by a
thread, i.e. if not manager.th_listener.exc, is to avoid having
another thread calling this function and re-starting the failed thread.
Hence, we avoid raising a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] on top of the thread’s
already caught exception.

	
SimulRPi.GPIO.output(channel, state)

	Set the output state of a GPIO pin.

The displaying thread is also started if possible.

	Parameters

	
	channel (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Output channel number based on the numbering system you have specified
(BOARD or BCM).

You can also provide a list or tuple of channel numbers:

chan_list = [11,12]

	state (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – State of the GPIO channel: 1 (HIGH) or 0 (LOW).

You can also provide a list of states:

chan_list = [11,12]
GPIO.output(chan_list, GPIO.LOW) # sets all to LOW
GPIO.output(chan_list, (GPIO.HIGH, GPIO.LOW)) # sets 1st HIGH and 2nd LOW.

	Raises

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – If the displaying thread caught an exception that occurred in its
 target function display_leds(), the
 said exception will be raised here.

Note

The displaying thread (for showing “LEDs” on the terminal) is started
if there is no exception caught by the thread and if it is not alive,
i.e. it is not already running.

See also

	input()
	Read the Important message about why we need to check if there is an exception caught by the thread when trying to start it.

	
SimulRPi.GPIO.setchannelnames(channel_names)

	Set the channel names for multiple channels

The channel names will be displayed in the terminal along each LED symbol.
If no channel name is given, then the channel number will be shown.

	Parameters

	channel_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that maps channel numbers (int [https://docs.python.org/3/library/functions.html#int]) to channel names
(str [https://docs.python.org/3/library/stdtypes.html#str]).

Example:

channel_names = {
 1: "The Channel 1",
 2: "The Channel 2"
}

	
SimulRPi.GPIO.setchannels(gpio_channels)

	Set the attributes (e.g. channel_name and led_symbols) for multiple
channels.

The attributes that can be updated for a given GPIO channel are:

	channel_id: unique identifier

	channel_name: will be shown along the LED symbol in the terminal

	channel_number: GPIO channel number based on the numbering system
you have specified (BOARD or BCM).

	led_symbols: should only be defined for output channels. It is a
dictionary defining the symbols to be used when the LED is turned ON
and OFF.

	key: keyboard key associated with a channel, e.g. “cmd_r”.

	Parameters

	gpio_channels (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list where each item is a dictionary defining the attributes for a
given GPIO channel.

Example:

gpio_channels = [
 {
 "channel_id": "lightsaber_button",
 "channel_name": "lightsaber_button",
 "channel_number": 23,
 "key": "cmd"
 },
 {
 "channel_id": "lightsaber_led",
 "channel_name": "lightsaber",
 "channel_number": 22,
 "led_symbols": {
 "ON": "\033[1;31;48m⬤\033[1;37;0m",
 "OFF": "⬤"
 }
 }
]

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – Raised if two channels are using the same channel number.

	
SimulRPi.GPIO.setdefaultsymbols(default_led_symbols)

	Set the default LED symbols used by all output channels.

	Parameters

	default_led_symbols (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that maps each output state (str [https://docs.python.org/3/library/stdtypes.html#str], {‘ON’,
‘OFF’}) to the LED symbol (str [https://docs.python.org/3/library/stdtypes.html#str]).

Example:

default_led_symbols = {
 'ON': '🔵',
 'OFF': '⚪ '
}

You can also provide the string default_ascii to make use of
ASCII-based LED symbols for all output channels. Useful if you are
still having problems displaying the default LED signs (which make use
of special characters) after you have tried the solutions shown
here:

default_led_symbols = "default_ascii"

	
SimulRPi.GPIO.setkeymap(key_to_channel_map)

	Set the default keymap dictionary with new keys and channels.

The default dictionary default_key_to_channel_map that maps keyboard
keys to GPIO channels can be modified by providing your own mapping
key_to_channel_map containing only the keys and channels that you
want to be modified.

	Parameters

	key_to_channel_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary mapping keys (str [https://docs.python.org/3/library/stdtypes.html#str]) to GPIO channel numbers
(int [https://docs.python.org/3/library/functions.html#int]) that will be used to update the default keymap.

For example:

key_to_channel_map = {
 "q": 23,
 "w": 24,
 "e": 25
}

	
SimulRPi.GPIO.setmode(mode)

	Set the numbering system used to identify the I/O pins on an RPi within
RPi.GPIO.

There are two ways of numbering the I/O pins on a Raspberry Pi within
RPi.GPIO:

	The BOARD numbering system: refers to the pin numbers on the P1 header
of the Raspberry Pi board

	The BCM numbers: refers to the channel numbers on the Broadcom SOC.

	Parameters

	mode (int [https://docs.python.org/3/library/functions.html#int]) – Numbering system used to identify the I/O pins on an RPi: BOARD or
BCM.

References

Function description and more info from RPi.GPIO wiki [https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/].

	
SimulRPi.GPIO.setprinting(enable_printing)

	Enable or disable printing to the terminal.

If printing is enabled, blinking red dots will be shown in the terminal,
simulating LEDs connected to a Raspberry Pi. Otherwise, nothing will be
printed in the terminal.

	Parameters

	enable_printing (bool [https://docs.python.org/3/library/functions.html#bool]) – If True. printing to the terminal is enabled. Otherwise, printing
will be disabled.

	
SimulRPi.GPIO.setsymbols(led_symbols)

	Set the LED symbols for multiple output channels.

	Parameters

	led_symbols (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that maps channel numbers (int [https://docs.python.org/3/library/functions.html#int]) to LED symbols
(dict [https://docs.python.org/3/library/stdtypes.html#dict]).

Example:

led_symbols = {
 1: {
 'ON': '🔵',
 'OFF': '⚪ '
 },
 2: {
 'ON': '🔵',
 'OFF': '⚪ '
 }
}

	
SimulRPi.GPIO.setup(channel, channel_type, pull_up_down=None, initial=None)

	Setup a GPIO channel as an input or output.

To configure a channel as an input:

GPIO.setup(channel, GPIO.IN)

To configure a channel as an output:

GPIO.setup(channel, GPIO.OUT)

You can also specify an initial value for your output channel:

GPIO.setup(channel, GPIO.OUT, initial=GPIO.HIGH)

	Parameters

	
	channel (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – GPIO channel number based on the numbering system you have specified
(BOARD or BCM).

You can also provide a list or tuple of channel numbers. All channels
will take the same values for the other parameters.

	channel_type (int [https://docs.python.org/3/library/functions.html#int]) – Type of a GPIO channel: e.g. 1 (GPIO.IN) or 0 (GPIO.OUT).

	pull_up_down (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional) – Initial value of an input channel, e.g. GPIO.PUP_UP. Default value is
None [https://docs.python.org/3/library/constants.html#None].

	initial (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional) – Initial value of an output channel, e.g. GPIO.HIGH. Default value is
None [https://docs.python.org/3/library/constants.html#None].

References

RPi.GPIO wiki [https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/]

	
SimulRPi.GPIO.setwarnings(show_warnings)

	Set warnings when configuring a GPIO pin other than the default
(input).

It is possible that you have more than one script/circuit on the GPIO of
your Raspberry Pi. As a result of this, if RPi.GPIO detects that a pin
has been configured to something other than the default (input), you get a
warning when you try to configure a script. [Ref: RPi.GPIO wiki [https://sourceforge.net/p/raspberry-gpio-python/wiki/BasicUsage/]]

	Parameters

	show_warnings (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show warnings when using a pin other than the default GPIO
function (input).

	
SimulRPi.GPIO.wait(timeout=2)

	Wait for certain events to complete.

Wait for the displaying and listening threads to do their tasks. If there
was an exception caught and saved by one thread, then it is raised here.

If more than timeout seconds elapsed without any of the events
described previously happening, the function exits.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – How long to wait (in seconds) before exiting from this function. By
default, we wait for 2 seconds.

	Raises

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – If the displaying or listening thread caught an exception, it will be
 raised here.

Important

This function is not called in cleanup() because if a thread
exception is raised, it will not be caught in the main program because
cleanup() should be found in a finally block:

try:
 do_something_with_gpio_api()
 GPIO.wait()
except Exception as e:
 # Do something with error
 print(e)
finally:
 GPIO.cleanup()

SimulRPi.manager

Module that manages the PinDB database, threads,
and default keymap.

The threads are responsible for displaying LEDs in the terminal and listening
to the keyboard.

The default keymap maps keyboard keys to GPIO channel numbers and is defined
in default_key_to_channel_map.

	
class SimulRPi.manager.DisplayExceptionThread(*args, **kwargs)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

A subclass from threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread] that defines threads that can
catch errors if their target functions raise an exception.

	Variables

	
	exception_raised (bool [https://docs.python.org/3/library/functions.html#bool]) – When the exception is raised, it should be set to True. By default, it
is False.

	exc (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – Represents the exception raised by the target function.

References

	stackoverflow [https://stackoverflow.com/a/51270466]

	
run()

	Method representing the thread’s activity.

Overridden from the base class threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]. This method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

It also catches and saves any error that the target function might
raise.

Important

The exception is only caught here, not raised. The exception is
further raised in SimulRPi.GPIO.output() or
SimulRPi.GPIO.wait(). The reason for not raising it here is
because the main program won’t catch it. The exception must be
raised outside the thread’s run method so that the thread’s
exception can be caught by the main program.

The same reasoning applies to the listening thread’s callbacks
Manager.on_press() and Manager.on_release().

	
class SimulRPi.manager.Manager

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that manages the pin database (SimulRPi.pindb.PinDB),
the threads responsible for displaying “LEDs” in the terminal and listening
for pressed/released keys, and the default keymap.

The threads are not started right away in __init__() but in
SimulRPi.GPIO.input() for the listening thread and
SimulRPi.GPIO.output() for the displaying thread.

They are eventually stopped in SimulRPi.GPIO.cleanup().

The default keymap maps keyboard keys to GPIO channel numbers and is defined
in default_key_to_channel_map.

	Variables

	
	mode (int [https://docs.python.org/3/library/functions.html#int]) – Numbering system used to identify the I/O pins on an RPi: BOARD or
BCM. Default value is None [https://docs.python.org/3/library/constants.html#None].

	warnings (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show warnings when using a pin other than the default GPIO
function (input). Default value is True.

	enable_printing (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enable printing on the terminal. Default value is True.

	pin_db (PinDB) – A database of Pins. See
PinDB on how to access it.

	default_led_symbols (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary that maps each output channel’s state (‘ON’ and ‘OFF’) to
a LED symbol. By default, it is set to these LED symbols:

default_led_symbols = {
 "ON": "🛑",
 "OFF": "⚪"
}

	key_to_channel_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary that maps keyboard keys (string [https://docs.python.org/3/library/string.html#module-string]) to GPIO channel
numbers (int [https://docs.python.org/3/library/functions.html#int]). By default, it takes the keys and values defined
in the keymap default_key_to_channel_map.

	channel_to_key_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The reverse dictionary of key_to_channel_map. It maps channels to
keys.

	th_display_leds (manager.DisplayExceptionThread) – Thread responsible for displaying blinking red dots in the terminal as
to simulate LEDs connected to an RPi.

	th_listener (manager.KeyboardExceptionThread) – Thread responsible for listening on any pressed or released keyboard
key as to simulate push buttons connected to an RPi.

If pynput couldn’t be imported, th_listener is None [https://docs.python.org/3/library/constants.html#None].
Otherwise, it is instantiated from manager.KeyboardExceptionThread.

Note

A keyboard listener is a subclass of threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread], and
all callbacks will be invoked from the thread.

Ref.: https://pynput.readthedocs.io/en/latest/keyboard.html#monitoring-the-keyboard

Important

If the pynput.keyboard module couldn’t be imported, the listening
thread th_listener will not be created and the parts of the
SimulRPi library that monitors the keyboard for any pressed or
released key will be ignored. Only the thread th_display_leds that
displays “LEDs” in the terminal will be created.

This is necessary for example in the case we are running tests on
travis and we don’t want travis to install pynput in a headless
setup because the following exception will get raised:

Xlib.error.DisplayNameError: Bad display name ""

The tests involving pynput will be performed with a mock version of
pynput.

	
add_pin(channel_number, channel_type, pull_up_down=None, initial=None)

	Add an input or output pin to the pin database.

An instance of Pin is created with the given
arguments and added to the pin database PinDB.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number associated with the
Pin to be added in the pin database.

	channel_type (int [https://docs.python.org/3/library/functions.html#int]) – Type of a GPIO channel: e.g. 1 (GPIO.IN) or 0 (GPIO.OUT).

	pull_up_down (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional) – Initial value of an input channel, e.g. GPIO.PUP_UP. Default
value is None [https://docs.python.org/3/library/constants.html#None].

	initial (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional) – Initial value of an output channel, e.g. GPIO.HIGH. Default value
is None [https://docs.python.org/3/library/constants.html#None].

	
bulk_channel_update(new_channels_attributes)

	Update the attributes (e.g. channel_name and led_symbols) for
multiple channels.

If a channel number is associated with a not yet created
Pin, the corresponding attributes will be
temporary saved for later when the pin object will be created with
add_pin().

	Parameters

	new_channels_attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary mapping channel numbers (int [https://docs.python.org/3/library/functions.html#int]) with channels’
attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict]). The accepted attributes are those
specified in SimulRPi.GPIO.setchannels().

Example:

new_channels_attributes = {
 1: {
 'channel_id': 'channel1',
 'channel_name': 'The Channel 1',
 'led_symbols': {
 'ON': '🔵',
 'OFF': '⚪ '
 }
 }.
 2: {
 'channel_id': 'channel2',
 'channel_name': 'The Channel 2',
 'key': 'cmd_r'
 }
}

	
display_leds()

	Displaying thread’s target function that simulates LEDs
connected to an RPi by blinking red dots in a terminal.

Example: terminal output

⬤ [9] ⬤ [10] 🔴 [11]

where each dot represents a LED and the number between brackets is the
associated GPIO channel number.

Important

display_leds() should be run by a thread and eventually
stopped from the main program by setting its do_run attribute
to False to let the thread exit from its target function.

For example:

th = DisplayExceptionThread(target=self.display_leds, args=())
th.start()

Your other code ...

Time to stop thread
th.do_run = False
th.join()

Note

If enable_printing is set to True, the terminal’s cursor will
be hidden. It will be eventually shown again in
SimulRPi.GPIO.cleanup() which is called by the main program
when it is exiting.

The reason is to avoid messing with the display of LEDs done by the
displaying thread th_display_leds.

Note

Since the displaying thread th_display_leds is an
DisplayExceptionThread object, it has an attribute exc
which stores the exception raised by this target function.

	
static get_key_name(key)

	Get the name of a keyboard key as a string.

The name of the special or alphanumeric key is given by the pynput [https://pynput.readthedocs.io/en/latest/index.html]
package.

	Parameters

	key (pynput.keyboard.Key [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.Key] or pynput.keyboard.KeyCode [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.KeyCode]) – The keyboard key (from pynput.keyboard) whose name will be
returned.

	Returns

	key_name – Returns the name of the given keyboard key if one was found by
pynput [https://pynput.readthedocs.io/en/latest/index.html]. Otherwise, it returns None [https://docs.python.org/3/library/constants.html#None].

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
on_press(key)

	When a valid keyboard key is pressed, set the associated pin’s
state to GPIO.LOW.

Callback invoked from the thread th_listener.

This thread is used to monitor the keyboard for any valid pressed key.
Only keys defined in the pin database are treated, i.e. keys that were
configured with SimulRPi.GPIO.setup() are further processed.

Once a valid key is detected as pressed, the associated pin’s state is
changed to GPIO.LOW.

	Parameters

	key (pynput.keyboard.Key [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.Key], pynput.keyboard.KeyCode [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.KeyCode], or None [https://docs.python.org/3/library/constants.html#None]) – The key parameter passed to callbacks is

	a pynput.keyboard.Key [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.Key] for special keys,

	a pynput.keyboard.KeyCode [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.KeyCode] for normal alphanumeric keys, or

	None [https://docs.python.org/3/library/constants.html#None] for unknown keys.

Ref.: https://bit.ly/3k4whEs

Note

If an exception is raised, it is caught to be further raised in
SimulRPi.GPIO.input() or SimulRPi.GPIO.wait().

See also

	DisplayExceptionThread()
	Read the Important message that explains why an exception is not raised in a thread’s callback or target function.

	
on_release(key)

	When a valid keyboard key is released, set the associated pin’s
state to GPIO.HIGH.

Callback invoked from the thread th_listener.

This thread is used to monitor the keyboard for any valid released key.
Only keys defined in the pin database are treated, i.e. keys that were
configured with SimulRPi.GPIO.setup() are further processed.

Once a valid key is detected as released, the associated pin’s state is
changed to GPIO.HIGH.

	Parameters

	key (pynput.keyboard.Key [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.Key], pynput.keyboard.KeyCode [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.KeyCode], or None [https://docs.python.org/3/library/constants.html#None]) – The key parameter passed to callbacks is

	a pynput.keyboard.Key [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.Key] for special keys,

	a pynput.keyboard.KeyCode [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.KeyCode] for normal alphanumeric keys, or

	None [https://docs.python.org/3/library/constants.html#None] for unknown keys.

Ref.: https://bit.ly/3k4whEs

Note

If an exception is raised, it is caught to be further raised in
SimulRPi.GPIO.input() or SimulRPi.GPIO.wait().

See also

	DisplayExceptionThread()
	Read the Important message that explains why an exception is not raised in a thread’s callback or target function.

	
update_channel_names(new_channel_names)

	Update the channels names for multiple channels.

If a channel number is associated with a not yet created
Pin, the corresponding channel_name will be
temporary saved for later when the pin object will be created with
add_pin().

	Parameters

	new_channel_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that maps channel numbers (int [https://docs.python.org/3/library/functions.html#int]) to channel names
(str [https://docs.python.org/3/library/stdtypes.html#str]).

Example:

new_channel_names = {
 1: "The Channel 1",
 2: "The Channel 2"
}

	
update_default_led_symbols(new_default_led_symbols)

	Update the default LED symbols used by all output channels.

	Parameters

	new_default_led_symbols (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that maps each output state (str [https://docs.python.org/3/library/stdtypes.html#str], {‘ON’,
‘OFF’}) to a LED symbol (str [https://docs.python.org/3/library/stdtypes.html#str]).

Example:

new_default_led_symbols = {
 'ON': '🔵',
 'OFF': '⚪ '
}

	
update_keymap(new_keymap)

	Update the default dictionary mapping keys and GPIO channels.

new_keymap is a dictionary mapping some keys to their new GPIO
channels, and will be used to update the default keymap
default_key_to_channel_map.

	Parameters

	new_keymap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that maps keys (str [https://docs.python.org/3/library/stdtypes.html#str]) to their new GPIO channels
(int [https://docs.python.org/3/library/functions.html#int]).

Example:

new_keymap = {
 "f": 24,
 "g": 25,
 "h": 23
}

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Raised if a given key is invalid: only special and alphanumeric
 keys recognized by pynput [https://pynput.readthedocs.io/en/latest/index.html] are accepted.

 See the documentation for SimulRPi.mapping for a list of
 accepted keys.

Note

If the key to be updated is associated to a channel that is already
taken by another key, both keys’ channels will be swapped. However,
if a key is being linked to a None [https://docs.python.org/3/library/constants.html#None] channel, then it will
take on the maximum channel number available + 1.

	
update_led_symbols(new_led_symbols)

	Update the LED symbols for multiple channels.

If a channel number is associated with a not yet created
Pin, the corresponding LED symbols will be
temporary saved for later when the pin object will be created with
add_pin().

	Parameters

	new_led_symbols (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary that maps channel numbers (int [https://docs.python.org/3/library/functions.html#int]) to LED symbols
(dict [https://docs.python.org/3/library/stdtypes.html#dict]).

Example:

new_led_symbols = {
 1: {
 'ON': '🔵',
 'OFF': '⚪ '
 },
 2: {
 'ON': '🔵',
 'OFF': '⚪ '
 }
}

	
static validate_key(key)

	Validate if a key is recognized by pynput [https://pynput.readthedocs.io/en/latest/index.html]

A valid key can either be:

	a pynput.keyboard.Key [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.Key] for special keys (e.g. tab or up), or

	a pynput.keyboard.KeyCode [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.KeyCode] for normal alphanumeric keys.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key (e.g. ‘tab’) that will be validated.

	Returns

	retval – Returns True if it’s a valid key. Otherwise, it returns False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

References

pynput [https://pynput.readthedocs.io/en/latest/keyboard.html#reference]

See also

	SimulRPi.mapping
	for a list of special keys supported by pynput [https://pynput.readthedocs.io/en/latest/index.html].

SimulRPi.mapping

Module that defines the dictionary
that maps keys to GPIO channels.

This module defines the default mapping between keyboard keys and GPIO
channels. It is used by SimulRPi.manager when monitoring the keyboard
with the package pynput [https://pynput.readthedocs.io/en/latest/index.html] for any pressed/released key as to simulate a push
button connected to a Raspberry Pi.

Notes

In early RPi models, there are 17 GPIO channels and in late RPi models, there
are 28 GPIO channels.

By default, 28 GPIO channels (from 0 to 27) are mapped to alphanumeric and
special keys. See the content of the default keymap.

Here is the full list of special keys you can use with info about some of them
(taken from pynput reference [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.Key]):

	alt

	alt_gr

	alt_l

	alt_r

	backspace

	caps_lock

	cmd [https://docs.python.org/3/library/cmd.html#module-cmd]: A generic command button. On PC platforms, this corresponds to
the Super key or Windows key, and on Mac it corresponds to the Command key.

	cmd_l: The left command button. On PC platforms, this corresponds
to the Super key or Windows key, and on Mac it corresponds to the Command
key.

	cmd_r: The right command button. On PC platforms, this corresponds
to the Super key or Windows key, and on Mac it corresponds to the Command key.

	ctrl: A generic Ctrl key.

	ctrl_l

	ctrl_r

	delete

	down

	end

	enter

	esc

	f1: The function keys. F1 to F20 are defined.

	home

	insert: The Insert key. This may be undefined for some platforms.

	left

	media_next

	media_play_pause

	media_previous

	media_volume_down

	media_volume_mute

	media_volume_up

	menu: The Menu key. This may be undefined for some platforms.

	num_lock: The NumLock key. This may be undefined for some platforms.

	page_down

	page_up

	pause: The Pause/Break key. This may be undefined for some platforms.

	print_screen: The PrintScreen key. This may be undefined for some
platforms.

	right

	scroll_lock

	shift

	shift_l

	shift_r

	space

	tab

	up

References

	RPi Header: https://bit.ly/30ZM2Uj

	pynput: https://pynput.readthedocs.io/

Important

SimulRPi.GPIO.setkeymap() allows you to modify the default keymap.

Content of the default keymap dictionary (key: keyboard key as
string [https://docs.python.org/3/library/string.html#module-string], value: GPIO channel as int [https://docs.python.org/3/library/functions.html#int]):

default_key_to_channel_map = {
 "0": 0, # sudo on mac
 "1": 1, # sudo on mac
 "2": 2, # sudo on mac
 "3": 3, # sudo on mac
 "4": 4, # sudo on mac
 "5": 5, # sudo on mac
 "6": 6, # sudo on mac
 "7": 7, # sudo on mac
 "8": 8, # sudo on mac
 "9": 9, # sudo on mac
 "q": 10, # sudo on mac
 "alt": 11, # left alt on mac
 "alt_l": 12, # not recognized on mac
 "alt_r": 13,
 "alt_gr": 14,
 "cmd": 15, # left cmd on mac
 "cmd_l": 16, # not recognized on mac
 "cmd_r": 17,
 "ctrl": 18, # left ctrl on mac
 "ctrl_l": 19, # not recognized on mac
 "ctrl_r": 20,
 "media_play_pause": 21,
 "media_volume_down": 22,
 "media_volume_mute": 23,
 "media_volume_up": 24,
 "shift": 25, # left shift on mac
 "shift_l": 26, # not recognized on mac
 "shift_r": 27,
}

Important

There are some platform limitations on using some of the keyboard keys with
pynput [https://pynput.readthedocs.io/] which is used for monitoring the
keyboard.

For instance, on macOS, some keyboard keys may require that you run your
script with sudo. All alphanumeric keys and some special keys
(e.g. backspace and right) require sudo. In the content of
default_key_to_channel_map shown
previously, I commented those keyboard keys that need sudo on macOS. The
others don’t need sudo on macOS such as cmd_r and shift.

For more information about those platform limitations, see
pynput documentation [https://pynput.readthedocs.io/en/latest/limitations.html].

Warning

If you want to be able to run your python script with sudo in order to use
some keys that require it, you might need to edit /etc/sudoers to add
your PYTHONPATH if your script makes use of your PYTHONPATH as
configured in your ~/.bashrc file. However, I don’t recommend editing
/etc/sudoers since you might break your sudo command (e.g.
sudo: /etc/sudoers is owned by uid 501, should be 0).

Instead, use the keys that don’t requre sudo such as cmd_r and
shift on macOS.

Note

On macOS, if the left keys alt_l, ctrl_l, cmd_l, and
shift_l are not recognized, use their generic counterparts instead:
alt, ctrl, cmd [https://docs.python.org/3/library/cmd.html#module-cmd], and shift.

SimulRPi.pinbdb

Module that defines a database for storing information about GPIO pins.

The database is created as a dictionary mapping channel numbers to objects
representing GPIO pins.

The PinDB class provides an API for accessing this database with
such functions as retrieving or setting pins’ attributes.

	
class SimulRPi.pindb.Pin(channel_number, channel_id, channel_type, channel_name=None, key=None, led_symbols=None, pull_up_down=None, initial=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class that represents a GPIO pin.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number based on the numbering system you have specified
(BOARD or BCM).

	channel_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique identifier.

	gpio_type (int [https://docs.python.org/3/library/functions.html#int]) – Type of a GPIO channel: e.g. 1 (GPIO.IN) or 0 (GPIO.OUT).

	channel_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – It will be displayed in the terminal along with the LED symbol if it is
available. Otherwise, the channel_number is shown. By default, its
value is None [https://docs.python.org/3/library/constants.html#None].

	key (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None], optional) – Keyboard key associated with the GPIO channel, e.g. cmd_r.

	led_symbols (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – It should only be defined for output channels. It is a dictionary
defining the symbols to be used when the LED is turned ON and OFF. If
not found for an ouput channel, then the default LED symbols will be
used as specified in SimulRPi.manager.Manager.

Example:

{
 "ON": "🔵",
 "OFF": "⚪ "
}

	pull_up_down (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional) – Initial value of an input channel, e.g. GPIO.PUP_UP. Default value is
None [https://docs.python.org/3/library/constants.html#None].

	initial (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None], optional) – Initial value of an output channel, e.g. GPIO.HIGH. Default value is
None [https://docs.python.org/3/library/constants.html#None].

	Variables

	state (int [https://docs.python.org/3/library/functions.html#int]) – State of the GPIO channel: 1 (HIGH) or 0 (LOW).

	
class SimulRPi.pindb.PinDB

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for storing and modifying Pins.

Each instance of Pin is saved in a dictionary that maps its
channel number to the Pin object.

	Variables

	output_pins (list [https://docs.python.org/3/library/stdtypes.html#list]) – List containing Pin objects that are output channels.

Note

The dictionary (a “database” of Pins) must be accessed
through the different methods available in PinDB, e.g.
get_pin_from_channel().

	
create_pin(channel_number, channel_id, channel_type, **kwargs)

	Create an instance of Pin and save it in a dictionary.

Based on the given arguments, an instance of Pin is
created and added to a dictionary that acts like a database of pins
with the key being the pin’s channel number and the value is an
instance of Pin.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number based on the numbering system you have specified
(BOARD or BCM).

	channel_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique identifier.

	channel_type (int [https://docs.python.org/3/library/functions.html#int]) – Type of a GPIO channel: e.g. 1 (GPIO.IN) or 0 (GPIO.OUT).

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – These are the (optional) keyword arguments for Pin.__init__().
See Pin for a list of its parameters which can be included
in kwargs.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – Raised if two channels are using the same channel number.

	
get_pin_from_channel(channel_number)

	Get a Pin from a given channel.

	Parameters

	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number associated with the Pin to be
retrieved.

	Returns

	Pin – If no Pin could be retrieved based on the given channel,
None [https://docs.python.org/3/library/constants.html#None] is returned. Otherwise, a Pin object is
returned.

	Return type

	Pin or None [https://docs.python.org/3/library/constants.html#None]

	
get_pin_from_key(key)

	Get a Pin from a given pressed/released key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The pressed/released key that is associated with the Pin
to be retrieved.

	Returns

	Pin – If no Pin could be retrieved based on the given key,
None [https://docs.python.org/3/library/constants.html#None] is returned. Otherwise, a Pin object is
returned.

	Return type

	Pin or None [https://docs.python.org/3/library/constants.html#None]

	
get_pin_state(channel_number)

	Get a Pin’s state from a given channel.

The state associated with a Pin can either be 1 (HIGH) or 0
(LOW).

	Parameters

	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number associated with the Pin whose state is
to be returned.

	Returns

	state – If no Pin could be retrieved based on the given channel
number, then None [https://docs.python.org/3/library/constants.html#None] is returned. Otherwise, the
Pin’s state is returned: 1 (HIGH) or 0 (LOW).

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]

	
set_pin_id_from_channel(channel_number, channel_id)

	Set a Pin’s channel id from a given channel number.

A Pin is retrieved based on a given channel, then its
channel_id is set.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number associated with the Pin whose channel
id will be set.

	channel_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new channel id that a Pin will be updated with.

	Returns

	retval – Returns True if the Pin was successfully set with
channel_id. Otherwise, it returns False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_pin_key_from_channel(channel_number, key)

	Set a Pin’s key from a given channel.

A Pin is retrieved based on a given channel, then its
key is set.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number associated with the Pin whose key will
be set.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new keyboard key that a Pin will be updated with.

	Returns

	retval – Returns True if the Pin was successfully set with key.
Otherwise, it returns False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_pin_name_from_channel(channel_number, channel_name)

	Set a Pin’s channel name from a given channel number.

A Pin is retrieved based on a given channel, then its
channel_name is set.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number associated with the Pin whose channel
name will be set.

	channel_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new channel name that a Pin will be updated with.

	Returns

	retval – Returns True if the Pin was successfully set with
channel_name. Otherwise, it returns False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_pin_state_from_channel(channel_number, state)

	Set a Pin’s state from a given channel.

A Pin is retrieved based on a given channel, then its
state is set.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number associated with the Pin whose state
will be set.

	state (int [https://docs.python.org/3/library/functions.html#int]) – State the GPIO channel should take: 1 (HIGH) or 0 (LOW).

	Returns

	retval – Returns True if the Pin was successfully set with
state. Otherwise, it returns False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_pin_state_from_key(key, state)

	Set a Pin’s state from a given key.

A Pin is retrieved based on a given key, then its
state is set.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The keyboard key associated with the Pin whose state will
be set.

	state (int [https://docs.python.org/3/library/functions.html#int]) – State the GPIO channel should take: 1 (HIGH) or 0 (LOW).

	Returns

	retval – Returns True if the Pin was successfully set with
state. Otherwise, it returns False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_pin_symbols_from_channel(channel_number, led_symbols)

	Set a Pin’s led symbols from a given channel.

A Pin is retrieved based on a given key, then its
led_symbols is set.

	Parameters

	
	channel_number (int [https://docs.python.org/3/library/functions.html#int]) – GPIO channel number associated with the Pin whose state
will be set.

	led_symbols (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – It is a dictionary defining the symbols to be used when the LED is
turned ON and OFF. See Pin for more info about this
attribute.

	Returns

	retval – Returns True if the Pin was successfully set with
led_symbols. Otherwise, it returns False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

SimulRPi.run_examples

Script for executing code examples on a Raspberry Pi or computer (simulation).

This script allows you to run different code examples on your Raspberry Pi (RPi)
or computer in which case it will make use of the SimulRPi [https://pypi.org/project/SimulRPi] library which
partly fakes RPi.GPIO [https://pypi.org/project/RPi.GPIO/].

The code examples test different parts of the SimulRPi library in order to
show what it is capable of simulating from I/O devices connected to an RPi:

	Turn on/off LEDs: blink LED symbols in the terminal

	Detect pressed button: monitor keyboard with pynput [https://pynput.readthedocs.io/en/latest/index.html]

Usage

Once the SimulRPi package is installed, you should have access to
the run_examples script:

$ run_examples -h

run_examples [-h] [-v] -e EXAMPLE_NUMBER [-m {BOARD,BCM}] [-s]
 [-l [LED_CHANNEL [LED_CHANNEL ...]]]
 [-b BUTTON_CHANNEL] [-k KEY_NAME]
 [-t TOTAL_TIME_BLINKING] [--on TIME_LED_ON]
 [--off TIME_LED_OFF] [-a]

Run the code for example 1 on the RPi with default values for the options
-l (channel 10) and --on (1 second):

$ run_examples -e 1

Run the code for example 1 on your computer using the simulation module
SimulRPi.GPIO:

$ run_examples -s -e 1

	
SimulRPi.run_examples.ex1_turn_on_led(channel, time_led_on=3)

	Example 1: Turn ON a LED for some specified time.

A LED will be turned on for time_led_on seconds.

	Parameters

	
	channel (int [https://docs.python.org/3/library/functions.html#int]) – Output channel number based on the numbering system you have
specified (BOARD or BCM).

	time_led_on (float [https://docs.python.org/3/library/functions.html#float], optional) – Time in seconds the LED will stay turned ON. The default value is 3
seconds.

	
SimulRPi.run_examples.ex2_turn_on_many_leds(channels, time_leds_on=3)

	Example 2: Turn ON multiple LEDs for some specified time.

All LEDs will be turned on for time_leds_on seconds.

	Parameters

	
	channels (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of output channel numbers based on the numbering system you have
specified (BOARD or BCM).

	time_leds_on (float [https://docs.python.org/3/library/functions.html#float], optional) – Time in seconds the LEDs will stay turned ON. The default value is 3
seconds.

	
SimulRPi.run_examples.ex3_detect_button(channel)

	Example 3: Detect if a button is pressed.

The function waits for the button to be pressed associated with the given
channel. As soon as the button is pressed, a message is printed and the
function exits.

	Parameters

	channel (int [https://docs.python.org/3/library/functions.html#int]) – Input channel number based on the numbering system you have specified
(BOARD or BCM).

Note

If the simulation mode is enabled (-s), the specified keyboard key
will be detected if pressed. The keyboard key can be specified through
the command line option -b (button channel) or -k (the key
name, e.g. ‘ctrl’). See script’s usage.

	
SimulRPi.run_examples.ex4_blink_led(channel, total_time_blinking=4, time_led_on=0.5, time_led_off=0.5)

	Example 4: Blink a LED for some specified time.

The led will blink for a total of total_time_blinking seconds. The LED
will stay turned on for time_led_on seconds before turning off for
time_led_off seconds, and so on until total_time_blinking seconds
elapse.

Press ctrl + c to stop the blinking completely and exit from
the function.

	Parameters

	
	channel (int [https://docs.python.org/3/library/functions.html#int]) – Output channel number based on the numbering system you have specified
(BOARD or BCM).

	total_time_blinking (float [https://docs.python.org/3/library/functions.html#float], optional) – Total time in seconds the LED will be blinking. The default value is 4
seconds.

	time_led_on (float [https://docs.python.org/3/library/functions.html#float], optional) – Time in seconds the LED will stay turned ON at a time. The default
value is 0.5 second.

	time_led_off (float [https://docs.python.org/3/library/functions.html#float], optional) – Time in seconds the LED will stay turned OFF at a time. The default
value is 0.5 second.

	
SimulRPi.run_examples.ex5_blink_led_if_button(led_channel, button_channel, total_time_blinking=4, time_led_on=0.5, time_led_off=0.5)

	Example 5: If a button is pressed, blink a LED for some specified
time.

As soon as the button from the given button_channel is pressed, the LED
will blink for a total of total_time_blinking seconds.

The LED will stay turned on for time_led_on seconds before turning off for
time_led_off seconds, and so on until total_time_blinking seconds
elapse.

Press ctrl + c to stop the blinking completely and exit from
the function.

	Parameters

	
	led_channel (int [https://docs.python.org/3/library/functions.html#int]) – Output channel number based on the numbering system you have specified
(BOARD or BCM).

	button_channel (int [https://docs.python.org/3/library/functions.html#int]) – Input channel number based on the numbering system you have specified
(BOARD or BCM).

	total_time_blinking (float [https://docs.python.org/3/library/functions.html#float], optional) – Total time in seconds the LED will be blinking. The default value is 4
seconds.

	time_led_on (float [https://docs.python.org/3/library/functions.html#float], optional) – Time in seconds the LED will stay turned ON at a time. The default
value is 0.5 second.

	time_led_off (float [https://docs.python.org/3/library/functions.html#float], optional) – Time in seconds the LED will stay turned OFF at a time. The default
value is 0.5 second.

Note

If the simulation mode is enabled (-s), the specified keyboard key
will be detected if pressed. The keyboard key can be specified through
the command line option -b (button channel) or -k (the key
name, e.g. ‘ctrl’). See script’s usage.

	
SimulRPi.run_examples.main()

	Main entry-point to the script.

According to the user’s choice of action, the script might run one of the
specified code examples.

If the simulation flag (-s) is used, then the SimulRPi.GPIO [https://pypi.org/project/SimulRPi] module
will be used which partly fakes RPi.GPIO [https://pypi.org/project/RPi.GPIO/].

Notes

Only one action at a time can be performed.

	
SimulRPi.run_examples.setup_argparser()

	Setup the argument parser for the command-line script.

The script allows you to run a code example on your RPi or on your
computer. In the latter case, it will make use of the
SimulRPi.GPIO [https://pypi.org/project/SimulRPi] module which partly fakes RPi.GPIO [https://pypi.org/project/RPi.GPIO/].

	Returns

	args – Simple class used by default by parse_args() to create an object
holding attributes and return it 1.

	Return type

	argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

References

	1

	argparse.Namespace [https://docs.python.org/3.7/library/argparse.html#argparse.Namespace].

SimulRPi.utils

Collection of utility functions used for the SimulRPi library.

	
SimulRPi.utils.blink_led(channel, time_led_on, time_led_off)

	Blink LEDs from the given channels.

LEDs on the given channel will be turned ON and OFF for time_led_on
seconds and time_led_off seconds, respectively.

	Parameters

	
	channel (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Channel numbers associated with the LEDs which will blink.

	time_led_on (float [https://docs.python.org/3/library/functions.html#float]) – Time in seconds the LEDs will stay turned ON at a time.

	time_led_off (float [https://docs.python.org/3/library/functions.html#float]) – Time in seconds the LEDs will stay turned OFF at a time.

	
SimulRPi.utils.turn_off_led(channel)

	Turn off LEDs from the given channels.

	Parameters

	channel (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Channel numbers associated with LEDs which will be turned off.

	
SimulRPi.utils.turn_on_led(channel)

	Turn on LEDs from the given channels.

	Parameters

	channel (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Channel numbers associated with LEDs which will be turned on.

 Changelog

Changelog

	Version 0.1.0a1

	Version 0.1.0a0

	Version 0.0.1a0

	Version 0.0.0a0

Version 0.1.0a1

September 20, 2020

	Remove Work-In-Progress from documentation

	Version 0.1.0a0.post1 was yanked for a clearer version number

Version 0.1.0a0

September 15, 2020

	The default LED symbols are now big non-ASCII signs:

🛑 : LED turned ON
⚪ : LED turned OFF

NOTE: the default symbols used by all GPIO channels can be modified with
SimulRPi.GPIO.setdefaultsymbols()

	LED symbols for each channel can be modified with
SimulRPi.GPIO.setsymbols()

	Channel names can now be displayed instead of channel numbers in the terminal:

🛑 [LED 1] 🛑 [LED 2] 🛑 [LED 3] ⬤ [lightsaber]

	New modules: SimulRPi.manager and SimulRPi.pindb

	Manager is now in its own module:
SimulRPi.manager

	Pin and PinDB are now in
their own module: SimulRPi.pindb

NOTE: these classes used to be in SimulRPi.GPIO

	New attributes in SimulRPi.pindb.Pin and
SimulRPi.manager.Manager:

	Pin.channel_id: unique identifier

	Pin.channel_name: displayed in the terminal along each LED symbol

	Pin.channel_number: used to be called channel

	Pin.channel_type: used to be called gpio_function
and refers to the type of GPIO channel, e.g. 1 (GPIO.IN) or 0
(GPIO.OUT).

	Pin.led_symbols: each pin (aka channel) is represented by LED symbols
if it is an output channel

	Manager.default_led_symbols: defines the default LED symbols used to
represent each GPIO channel in the terminal

	New functions in SimulRPi.GPIO:

	setchannelnames(): sets channels names for multiple
channels

	setchannels(): sets the attributes (e.g.
channel_name and led_symbols) for multiple channels

	setdefaultsymbols(): changes the default LED symbols
used by all output channels

	setsymbols(): sets the LED symbols for multiple
channels

	wait(): waits for the threads to do their tasks and
raises an exception if there was an error in a thread’s target function.
Hence, the main program can catch these thread exceptions.

	SimulRPi.GPIO.output() accepts channel and state as int [https://docs.python.org/3/library/functions.html#int],
list [https://docs.python.org/3/library/stdtypes.html#list] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	SimulRPi.GPIO.setup() accepts channel as int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list] or
tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	The displaying thread in SimulRPi.manager is now an instance of
DisplayExceptionThread. Thus, if there is an
exception raised in display_leds(), it is
now possible to catch it in the main program

	The keyboard listener thread in SimulRPi.manager is now an instance
of KeyboardExceptionThread (a subclass of
pynput.keyboard.Listener [https://pynput.readthedocs.io/en/latest/keyboard.html#pynput.keyboard.Listener]). Thus, if there is an exception raised in
on_press() or
on_release(), it is now possible to catch it
in the main program

	SimulRPi.GPIO.input() and SimulRPi.GPIO.output() now raise an
exception caught by the listening and displaying threads, respectively.

	If two channels use the same channel numbers, an exception is now raised.

	SimulRPi.run_examples:

	accepts the new option -a which will make use of ASCII-based LED
symbols in case that you are having problems displaying the
default LED symbols which use special characters (based on the UTF-8
encoding). See Display problems.

	all simulation-based examples involving “LEDs” and pressing keyboard keys
worked on the RPi OS (Debian-based)

See also

The SimulRPi API reference.

Version 0.0.1a0

August 14, 2020

	In SimulRPi.GPIO, the package pynput is not required anymore. If it
is not found, all keyboard-related functionalities from the SimulRPi
library will be skipped. Thus, no keyboard keys will be detected if pressed
or released when pynput is not installed.

This was necessary because Travis was raising an exception when I was
running a unit test: Xlib.error.DisplayNameError [https://travis-ci.org/github/raul23/SimulRPi/builds/716458786#L235]. It was
due to pynput not working well in a headless setup. Thus, pynput is
now removed from requirements_travis.txt.

Eventually, I will mock pynput when doing unit tests on parts of the
library that make use of pynput.

	Started writing unit tests

Version 0.0.0a0

August 9, 2020

	Initial release

	Tested code examples on different platforms and here are the results

	On an RPi with RPi.GPIO: all examples involving LEDs and pressing
buttons worked

	On a computer with SimulRPi.GPIO

	macOS: all examples involving “LEDs” and keyboard keys worked

	RPi OS [Debian-based]: all examples involving “LEDs” only worked

NOTE: I was running the script run_examples
with ssh but pynput doesn’t detect any pressed keyboard key
even though I set my environment variable Display, added
PYTHONPATH to etc/sudoers and ran the script with sudo. To be
further investigated.

[NOTE: tested the code examples with run_examples]
[EDIT: use Initial release]

 License: GPL3

License: GPL3

GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 SimulRPi	

 	
 	
 SimulRPi.GPIO	

 	
 	
 SimulRPi.manager	

 	
 	
 SimulRPi.mapping	

 	
 	
 SimulRPi.pindb	

 	
 	
 SimulRPi.run_examples	

 	
 	
 SimulRPi.utils	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_pin() (SimulRPi.manager.Manager method)

B

 	
 	blink_led() (in module SimulRPi.utils)

 	
 	bulk_channel_update() (SimulRPi.manager.Manager method)

C

 	
 	cleanup() (in module SimulRPi.GPIO)

 	
 	create_pin() (SimulRPi.pindb.PinDB method)

D

 	
 	display_leds() (SimulRPi.manager.Manager method)

 	
 	DisplayExceptionThread (class in SimulRPi.manager)

E

 	
 	ex1_turn_on_led() (in module SimulRPi.run_examples)

 	ex2_turn_on_many_leds() (in module SimulRPi.run_examples)

 	
 	ex3_detect_button() (in module SimulRPi.run_examples)

 	ex4_blink_led() (in module SimulRPi.run_examples)

 	ex5_blink_led_if_button() (in module SimulRPi.run_examples)

G

 	
 	get_key_name() (SimulRPi.manager.Manager static method)

 	get_pin_from_channel() (SimulRPi.pindb.PinDB method)

 	
 	get_pin_from_key() (SimulRPi.pindb.PinDB method)

 	get_pin_state() (SimulRPi.pindb.PinDB method)

I

 	
 	input() (in module SimulRPi.GPIO)

M

 	
 	main() (in module SimulRPi.run_examples)

 	Manager (class in SimulRPi.manager)

 	
 module

 	SimulRPi.GPIO

 	SimulRPi.manager

 	SimulRPi.mapping

 	SimulRPi.pindb

 	SimulRPi.run_examples

 	SimulRPi.utils

O

 	
 	on_press() (SimulRPi.manager.Manager method)

 	
 	on_release() (SimulRPi.manager.Manager method)

 	output() (in module SimulRPi.GPIO)

P

 	
 	Pin (class in SimulRPi.pindb)

 	
 	PinDB (class in SimulRPi.pindb)

R

 	
 	run() (SimulRPi.manager.DisplayExceptionThread method)

S

 	
 	set_pin_id_from_channel() (SimulRPi.pindb.PinDB method)

 	set_pin_key_from_channel() (SimulRPi.pindb.PinDB method)

 	set_pin_name_from_channel() (SimulRPi.pindb.PinDB method)

 	set_pin_state_from_channel() (SimulRPi.pindb.PinDB method)

 	set_pin_state_from_key() (SimulRPi.pindb.PinDB method)

 	set_pin_symbols_from_channel() (SimulRPi.pindb.PinDB method)

 	setchannelnames() (in module SimulRPi.GPIO)

 	setchannels() (in module SimulRPi.GPIO)

 	setdefaultsymbols() (in module SimulRPi.GPIO)

 	setkeymap() (in module SimulRPi.GPIO)

 	setmode() (in module SimulRPi.GPIO)

 	setprinting() (in module SimulRPi.GPIO)

 	setsymbols() (in module SimulRPi.GPIO)

 	setup() (in module SimulRPi.GPIO)

 	
 	setup_argparser() (in module SimulRPi.run_examples)

 	setwarnings() (in module SimulRPi.GPIO)

 	
 SimulRPi.GPIO

 	module

 	
 SimulRPi.manager

 	module

 	
 SimulRPi.mapping

 	module

 	
 SimulRPi.pindb

 	module

 	
 SimulRPi.run_examples

 	module

 	
 SimulRPi.utils

 	module

T

 	
 	turn_off_led() (in module SimulRPi.utils)

 	
 	turn_on_led() (in module SimulRPi.utils)

U

 	
 	update_channel_names() (SimulRPi.manager.Manager method)

 	update_default_led_symbols() (SimulRPi.manager.Manager method)

 	
 	update_keymap() (SimulRPi.manager.Manager method)

 	update_led_symbols() (SimulRPi.manager.Manager method)

V

 	
 	validate_key() (SimulRPi.manager.Manager static method)

W

 	
 	wait() (in module SimulRPi.GPIO)

_static/images/SimulRPi_logo.png
SimulRPi

_static/images/example_01_terminal_output.png
o 1]

_images/6aef6a10c86d223a6d1264136d4fb70c5e281c2d.png
©)

_static/images/example_04_terminal_output.gif
1201

_static/images/example_05_terminal_output.gif
- [122] ~ python example_05_blink_led_if key.py

Press key 'ctri_r' to blink a LED

_images/128c1c0e92fab5aeeb4306ef4d5fac01cf88d5a7.png
101
191
191
19

Program exited with 0

[101
1101
1101
1101

111
1111
1111
111

_static/images/example_02_terminal_output.png
o101 o [11] o [12]

_images/2ee5bff6de44da9aabfbf388cb50a7455475a63d.png
Ex 2: turn ON 3 LEDs for a total of 1 second

e ol ® o] ®

Program exited with @

_static/images/example_03_terminal_output.png
Press key 'cmd_r' to exit
Key ‘cmd_r' pressed

_images/dce32e43f1d8faca2ba320b3582a60e23301754f.png
(@ 11

_images/example_01_terminal_output.png
® o]

_static/images/run_examples_05_terminal_output.gif
Sisulation mode enabled
Bx 5+ 11 the key 'cad_r' [13] is pressed, blink 3 LED 121 for 5.0 seconds

Press the key ‘crd_r' to turn on Ught ..

_images/d6cd40ca6b6701447ae4059f8599c78ddc94b4b7.gif
Press the key ‘ctrlr' to turn on light ...

_images/example_02_terminal_output.png
O] ® o] ®

_images/example_03_terminal_output.png
Press key 'cmd_r' to exit

Key pressed!

_images/example_04_terminal_output.gif
Simulation mode enabled
Ex 4: blink a LED for 4.0 seconds

nav.xhtml

 Table of Contents

 		
 SimulRPi’s documentation

 		
 README

 		
 Introduction

 		
 Dependencies

 		
 Installation instructions 😎

 		
 Usage

 		
 Use the library in your own code

 		
 Script run_examples

 		
 Examples

 		
 Example 1: display 1 LED

 		
 Example 2: display 3 LEDs

 		
 Example 3: detect a pressed key

 		
 Example 4: blink a LED

 		
 Example 5: blink a LED if a key is pressed

 		
 How to uninstall 😞

 		
 Resources

 		
 References

 		
 Example: How to use SimulRPi

 		
 Code example

 		
 Code explanation

 		
 Useful functions from the API

 		
 GPIO.cleanup

 		
 GPIO.setchannelnames

 		
 GPIO.setchannels

 		
 GPIO.setdefaultsymbols

 		
 GPIO.setkeymap

 		
 GPIO.setprinting

 		
 GPIO.setsymbols

 		
 GPIO.wait

 		
 Display problems

 		
 Non-ASCII characters can’t be displayed

 		
 Solution #1: change your locale settings (best solution)

 		
 Solution #2: export PYTHONIOENCODING=utf8 (temporary solution)

 		
 Use ASCII-based LED symbols

 		
 Multiple lines of LED symbols

 		
 Solution: enlarge the window

 		
 API Reference

 		
 SimulRPi.GPIO

 		
 SimulRPi.manager

 		
 SimulRPi.mapping

 		
 SimulRPi.pinbdb

 		
 SimulRPi.run_examples

 		
 Usage

 		
 SimulRPi.utils

 		
 Changelog

 		
 Version 0.1.0a1

 		
 Version 0.1.0a0

 		
 Version 0.0.1a0

 		
 Version 0.0.0a0

 		
 License: GPL3

_images/example_05_terminal_output.gif
Press the key 'shift_r' to turn on light

_images/solution_with_locale_change.png

_static/minus.png

